alexgroup-studio.ru – Программы, безопасность, обзоры, новости

Программы, безопасность, обзоры, новости

Что такое системная шина. Достаточная скорость шины материнской платы

Шиной называют совокупность линий, сгруппированных по функциональному назначению - шина адреса (ША), шина данных (ШД), шина управления (ШУ), шина питания (ШИ).

Чтобы охарактеризовать конкретную шину, нужно описать:

  • - совокупность сигнальных линий;
  • - физические, механические и электрические характеристики шины;
  • - используемые сигналы арбитража, состояния, управления и синхронизации;
  • - правила взаимодействия подключенных к шине устройств (протокол шины).

Важным критерием, определяющим характеристики шины, может служить ее целевое назначение. По этому критерию можно выделить:

  • - шины «процессор-память»;
  • - шины ввода/вывода;
  • - системные шины.

Шипа «процессор-память»

Шина «процессор-память» обеспечивает непосредственную связь между центральным процессором (ЦП) вычислительной машины и основной памятью (ОП). В современных микропроцессорах такую шину часто называют шиной переднего тана и обозначают аббревиатурой FSB (Front-Side Bus). Интенсивный трафик между процессором и памятью требует, чтобы полоса пропускания шины, то есть количество информации, проходящей по шине в единицу времени, была наибольшей. Роль этой шины иногда выполняет системная шина (см. ниже), однако в плане эффективности значительно выгоднее, если обмен между ЦП и ОП ведется по отдельной шине. К рассматриваемому виду можно отнести также шину, связывающую процессор с кэш-памятью второго уровня, известную как шина заднего тана - BSB (Back-Side Bus). BSB позволяет вести обмен с большей скоростью, чем FSB, и полностью реализовать возможности более скоростной кэш-памяти.

Поскольку в фон-нсймановских машинах именно обмен между процессором и памятью во многом определяет быстродействие ВМ, разработчики уделяют связи ЦП с памятью особое внимание. Для обеспечения максимальной пропускной способности шины «процессор-память» всегда проектируются с учетом особенностей организации системы памяти, а длина шины делается по возможности минимальной.

Шина ввода/вывода

Шина ввода/вывода служит для соединения процессора (памяти) с устройствами ввода/вывода (УВВ). Учитывая разнообразие таких устройств, шины ввода/вывода унифицируются и стандартизируются. Связи с большинством УВВ (но не с видеосистемами) не требуют от шины высокой пропускной способности. При проектировании шин ввода/вывода в учет берутся стоимость конструктива и соединительных разъемов. Такие шины содержат меньше линий по сравнению с вариантом «процессор-память», но длина линий может быть весьма большой. Типичными примерами подобных шин могут служить шины PCI и SCSI.

С целью снижения стоимости некоторые ВМ имеют общую шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. служит для физического и логического объединения всех устройств ВМ. Поскольку основные устройства машины, как правило, размещаются на общей монтажной плате, системную шину часто называют объединительной шиной (backplane bus), хотя эти термины нельзя считать строго эквивалентными.

Системная шина в состоянии содержать несколько сотен линий. Совокупность линий шины можно подразделить на три функциональные группы (рис. 7.1): шину данных, шину адреса и шину управления. К последней обычно относят также линии для подачи питающего напряжения на подключаемые к системной шине модули.

Рис 7.1

Особенности каждой из этих групп и распределение сигнальных линий подробно рассматриваются позже.

Функционирование системной шины можно описать следующим образом. Если один из модулей хочет передать данные в другой, он должен выполнить два действия: получить в свое распоряжение шину и передать по ней данные. Если какой-то модуль хочет получить данные от другого модуля, он должен получить доступ к шине и с помощью соответствующих линий управления и адреса передать в другой модуль запрос. Далее он должен ожидать, пока модуль, получивший запрос, пошлет данные.

Физически системная шина представляет собой совокупность параллельных электрических проводников. Этими проводниками служат металлические полоски на печатной плате. Шина подводится ко всем модулям, и каждый из них подсоединяется ко всем или некоторым ее линиям. Если ВМ конструктивно выполнена на нескольких платах, то все линии шины выводятся на разъемы, которые затем объединяются проводниками на общем шасси.

Среди стандартизированных системных шин универсальных ВМ наиболее известны шины Unibus, Fastbus, Futurebus, VME, NuBus, Multibus-II. Персональные компьютеры, как правило, строятся на основе системной шины в стандартах ISA, EISA или MCA.

Иерархия шин

Если к шине подключено большое число устройств, ее пропускная способность падает, поскольку слишком частая передача прав управления шиной от одного устройства к другому приводит к ощутимым задержкам. По этой причине во многих ВМ предпочтение отдается использованию нескольких шин, образующих определенную иерархию:

  • - вычислительная машина с одной шиной;
  • - вычислительная машина с двумя видами шин;
  • - вычислительная машина с тремя видами шин.

Вычислительная машина с одной шиной

В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между УВВ, с одной стороны, и процессором либо памятью - с другой.

Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация нс в состоянии обеспечить высокие интенсивность и скорость транзакций, причем «узким местом» становится именно шина.

Вычислительная машина с двумя видами шин

Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены непосредственно к системной шине, больший эффект достигается применением одной или нескольких шин ввода/вывода. УВВ подключаются к шинам ввода/вывода, которые берут на себя основной трафик, не связанный с выходом на процессор или память. Адаптеры шин обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами УВВ. Это позволяет ВМ поддерживать работу множества устройств ввода/вывода и одновременно «развязать» обмен информацией по тракту процессор-память и обмен информацией с УВВ.

Подобная схема существенно снижает нагрузку на скоростную тину «процессор-память» и способствует повышению общей производительности ВМ. В качестве примера можно привести вычислительную машину Apple Macintosh II, где роль шины «процессор-память» играет шина NuBus. Кроме процессора и памяти к ней подключаются некоторые УВВ. Прочие устройства ввода/вывода подключаются к шине SCSI Bus.

Вычислительная машина с тремя видами шин

Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения.

Шины ввода/вывода подключаются к шине расширения, а уже с нее через адаптер к шине «процессор-память». Схема еще более снижает нагрузку на шину «процессор-память». Такую организацию шин называют архитектурой с «пристройкой» (mezzanine architecture).

11 Системная шина, режимы работы системной шины, программируемые системные устройства

Шины – наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

Системная шина - предназначена для передачи информации между процессором и остальными электронными компонентами компьютера. По системной шине осуществляется адресация устройств и происходит обмен специальными служебными сигналами. Упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных но назначению (данные, адреса, управление).Системная шина представляет собой набор проводников электрических сигналов и систему протоколов соединения устройств при помощи этих проводников. Тип и характеристики протоколов передачи информации по системной шине определяют скорость передачи информации между отдельными устройствами материнской платы. Системные шины персональных компьютеров стандартизируются как по числу контактов и разрядности (числу проводников, используемых для одновременной передачи данных), так и по протоколам общения устройств через проводники. Системная шина соединяет все устройства компьютера в единое целое и обеспечивает их взаимодействие, взаимоуправление и работу с центральным процессором. В персональных компьютерах используются системные шины стандартов ISA, EISA, VLB и PSI. В наше время теперь используют только шину PCI, конечно еще можно встретить ISA, но она слишком медленная в сравнении с PCI, поэтому её больше не выпускаю.

18 Видеосистема ЭВМ. Принципы работы. Области применения

Видеокарта (видеоадаптер) Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора. С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти. За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: МDA (монохромный); СGA (4 цвета); ЕGA (16 цветов);VGА (256 цветов). В настоящее время применяются видеоадаптеры SVGА, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее). Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, тем самым, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения. Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало. Если программа имеет сложную систему управления и большое число экранных элементов, они не полностью помещаются на экране. Это приводит к снижению производительности труда и неэффективной работе. Цветовое разрешение (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка экрана. Максимально возможное цветовое разрешение зависит от свойств видеоадаптера и, в первую очередь, от количества установленной на нем видеопамяти. Кроме того, оно зависит и от установленного разрешения экрана. При высоком разрешении экрана на каждую точку изображения приходится отводить меньше места в видеопамяти, так что информация о цветах вынужденно оказывается более ограниченной. Минимальное требование по глубине цвета на сегодняшний день- 256 цветов хотя большинство программ требуют не менее 65 тыс. цветов (режим High Coloг) Наиболее комфортная работа достигается при глубине цвета 16,7 млн. цветов (резких Тruе Соlоr). Работа в полно цветном режиме Тruе Со1оr с высоким экранным разрешением требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти. Еще недавно типовым считались видеоадаптеры с объемом памяти 2-4 Мбайт, но уже сегодня обычным считается объем 16 Мбайт. Видеоускорение - одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнена математических вычислений в основном процессоре компьютера, а чисто аппаратным путем - преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видео карта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемого к видеоадаптеру. Различают два типа видео ускорителей - ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами (обычно офисного применения) и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций, но существуют ускорители, обладающие функциями и двумерного, и трехмерного ускорения.


Неотъемлемой частью (хотя впервые дисплей был реализован на некоторых ЭВМ второго поколения, например, на «МИР-2» - очень интересной во многих отношениях отечественной разработке). Рисунок 3.1 - Шинная архитектура ЭВМ Для получения на экране монитора стабильной картинки ее надо где-то хранить. Для этого и существует видеопамять. Сначала содержимое видеопамяти формируется компьютером, а...

Пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее оклик. Принцип действия. Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечения для начала работы с компьютером уже имеется в микросхеме ПЗУ в...

Шина процессора - соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится , далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus - FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP . Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS , называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB . В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность - 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Тема: Устройства ПК.

Учебныевопросы :

1. Устройства, составляющие архитектуру ПК.

2. Внутренние устройства ПК.

3. Внешние устройства ПК.

Современные ЭВМ весьма разнообразны как по своему устройству, так и по исполняемым функциям.

Если рассматривать ЭВМ по их функциональности, можно условно классифицировать их:

1. «Бытовые» ЭВМ (ПК);

2. «Учебные» ЭВМ (упрощенной архитектуры);

3. «Профессиональные» ЭВМ (рабочие станции на производстве, в офисе и др.);

4. ЭВМ-серверы (управление рабочими станциями, объединенными в сети, хранение больших массивов информации и т.д.) и др.

В зависимости от выполняемых функций и, благодаря открытой архитектуре устройство ЭВМ весьма разнообразно. В результате научно-технического развития архитектура ЭВМ постоянно усовершенствуется (эволюционирует).

Открытая архитектура современных ПК:

Интерфейсная система

Архитектура ЭВМ – это наиболее общие принципы построения, реализующие программное управление взаимодействием её основных узлов. Архитектура ЭВМ – это, прежде всего блоки и устройства, а также структура связей между ними.

Блоки и устройства, составляющие архитектуру ПК, кроме того разделяют на две группы:

· внутренние устройства;

· внешние (периферийные) устройства.

Внутренние устройства, вероятно, получили такое обобщающее название, так как объединены в одном корпусе , называемом системным блокомПК .

Внешний вид и размеры корпусов системных блоков разнообразны. Однако обязательным для всех корпусов элементом являются разъёмы для подключения внешних устройств и интерфейс управления .

При огромном разнообразии вариантов, составляемых из устройств, систем, помещенных в корпус системного блока, обязательно наличие минимальной их комплектации .

К «обязательным» относятся:

· Блок питания . В среднем мощность их составляет 100 – 400 Вт. Чем больше устройств в системе, тем большую мощность должен иметь блок питания. (Средняя мощность 200 – 300 Вт).

· Системная (материнская) плата . Это многофункциональное устройство является центральным для ЭВМ с открытой архитектурой. По физическому строению она представляет собой очень сложно организованную многослойную печатную плату.



С точки зрения функциональности системная плата выполняет комплекс функций по интеграции устройств и обеспечению их взаимодействия.

По мере того, как элементы конфигурации архитектуры ЭВМ стандартизируется, реализуется тенденция включения их в состав материнской платы.

Первая материнская плата была разработана фирмой IBM в августе 1981 года (PC-1). С самого начала материнская плата задумывалась как компонент, обеспечивающий механическое соединение и электрическую связь между всеми прочими аппаратными средствами. Кроме этих функций, она также осуществляет подачу электроэнергии (питание) на компоненты компьютера.

Архитектура современной системной платы (обобщенная) .

Современная МП содержит большое количество контроллеров (специализированных микропроцессоров) обеспечивающих взаимодействие всех устройств. Они реализованы в двух наборах микросхем, исторически получивших название «северный мост» и «южный мост» или чипсетов .

· Контроллер-концентратор памяти, или «северный мост» (англ. North Bridge) обеспечивает работу процессора, оперативной памяти и видеоподсистемы;

· Контроллер-концентратор ввода-вывода, или «Южный мост» (англ. South Bridge) обеспечивает работу с внешними устройствами.

Пропускная способность шины.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются.

Быстродействие устройства зависит от:

· тактовой частоты обработки данных (обычно измеряется в мегагерцах – МГц);

· и разрядности, т.е. количества битов данных, обрабатываемых за один такт (промежуток времени между подачей электрических импульсов, синхронизирующих работу устройств ПК).

Соответственно скорость передачи данных – пропускная способность соединяющих эти устройства шин также должна различаться. Пропускная способность шины равна разрядности шины (биты) умноженной на частоту шины (Гц – герцы. 1Гц = 1 такт в секунду ).

Системная шина (FSB от англ. Front Side Bus) осуществляет передачу данных между «Северным мостом» и микропроцессором. В современных ПК системная шина имеет разрядность 64 бита и частоту 400 МГц – 1600 МГц.

Пропускная способность может достигать 12,5 Гбайт/с.

Шина памяти осуществляет передачу данных между «Северным мостом» и оперативной памятью ПК. Имеет те же показатели, что и системная шина.

Шина PCI Express (Peripherial Component Interconnect Bus Express – ускоренная шина взаимодействия периферийных устройств) осуществляет передачу данных между «Северным мостом» и видеоплатой (видеокартой). Пропускная способность этой шины может достигать 32 Гбайт/с.

Шина SATA (англ. Serial Advanced Technology Attachment – последовательная шина подключения накопителей) осуществляет передачу данных между «Южным мостом» и устройством внешней памяти (жесткие диски, CD и DVD дисководы, дискеты). Пропускная способность может достигать 300 Мбайт/с.

Шина USB (англ. Universal Serial Bus – универсальная последовательная шина) осуществляет передачу данных между «Южным мостом» и разнообразными внешними устройствами (сканерами, цифровыми камерами и др.). Пропускная способность до 60 Мбайт/с. Обеспечивает подключение к ПК одновременно до 127 периферийных устройств.

Другие важные функции системной платы – обеспечение механического соединения и электрической связи между всеми прочими аппаратными средствами, а также подачи на них питания.

Существует большое разнообразие конструктивных решений системных плат.

Одной из характеристик системной платы является форм-фактор (AT/ATX). Она определяет размеры системной платы и расположений на ней компонентов аппаратных средств.

Упрощенная схема размещения компонентов СП.

Центральным блоком ПК считается расположенный в специальном разъёме системной платы электронный блок получивший название процессор или микропроцессор .

Первоначально микропроцессор объединил на одном кристалле кремния СБИС арифметико-логического устройства (АЛУ ) и устройства управления (УУ ).

Выполняемые микропроцессором команды предусматривают обычно арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.

Устройство управления вырабатывает управляющие сигналы, поступающие по шинам инструкций во все блоки ЭВМ.

Упрощенная схема УУ

Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции.

Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Дешифратор операций, считывая код операции из регистратора команд, выбирает в ПЗУ микропрограмм необходимую последовательность управляющих сигналов ­– код команды.

Узел формирования адреса – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд.

Кодовые шины данных, адреса и инструкций – части внутренней шины микропроцессора, осуществляющие передачу сигналов между процессором и другими устройствами ПК.

В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:

· выборки из регистра - счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

· выборки из ячеек ОЗУ, когда очередной команды и приёма считанной команды в регистр команд;

· расшифровки кода операции и признаков выбранной команды;

· считывания из соответствующих расшифрованному коду операций ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках ЭВМ процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;

· считывания из регистра команд и регистром МПП (микропроцессорной памяти) отдельных составляющих адресов операндов;

· выборки операндов и выполнения заданной операции их обработки;

· записи результатов в памяти;

· формирование адреса следующей команды программы.

Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации.

Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

  • Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Она используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 или 1066 МГц и имеет ширину 64 разряда (8 байт).
  • Шина AGP . Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x), обеспечивает пропускную способность до 2133 Мбайт/с и предназначается для подключения видеоадаптера. Она соединена с северным мостом или контроллером памяти (MCH) набора микросхем системной логики.
  • Шина PCI-Express. Третье поколение шины PCI . Шина PCI-Expres - это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 или 5 Гбит/с в обоих направлениях (эффективное значение - 250 или 500 Мбайт/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 4 или 8 Гбайт/с в каждом направлении.
  • Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.
  • Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; она используется, начиная с систем на базе процессоров 486. В настоящее время существует реализация этой шины с частотой 66 МГц. Она находится под управлением контроллера PCI - компонента северного моста или контроллера MCH набора микросхем системной логики. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. Шины PCI-X и PCI-Express представляют собой более производительные реализации шины PCI; материнские платы и системы, поддерживающие эту шину, появились на рынке в середине 2004 года.
  • Шина ISA. Эта 16-разрядная шина, работающая на частоте 8 МГц, впервые стала использоваться в системах AT в 1984 году (в первоначальном варианте IBM PC она была 8-разрядной и работала на частоте 5 МГц). Эта шина имела широкое распространение, но из спецификации PC99 была исключена. Реализуется с помощью южного моста. Чаще всего к ней подключается микросхема Super I/O.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.

Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.

  • Шины ISA, EISA, VL-Bus и MCA в современных конструкциях системных плат не используются. Мбайт/с. Мегабайт в секунду.
  • ISA. Industry Standard Architecture (архитектура промышленного стандарта), известная также как 8-разрядная PC/XT или 16разрядная AT-Bus.
  • LPC. Шина Low Pin Count (шина с малым количествомконтактов).
  • VL-Bus. VESA (Video Electronics Standards Association) Local Bus (расширение ISA).
  • MCA. MicroChannel Architecture (микроканальная архитектура) (системы IBM PS/2).
  • PC-Card. 16-разрядный интерфейс PCMCIA (Personal Computer Memory Card International Association). CardBus. 32-разрядная шина PC-Card.
  • Hub Interface. Шина набора микросхем Intel серии 8xx.
  • PCI. Peripheral Component Interconnect (шина взаимодействия периферийных компонентов).
  • AGP. Accelerated Graphics Port (ускоренный графический порт).
  • RS-232. Стандартный последовательный порт, 115,2 Кбайт/с.
  • RS-232 HS. Высокоскоростной последовательный порт, 230,4 Кбайт/с.
  • IEEE-1284 Parallel. Стандартный двунаправленный параллельный порт.
  • IEEE-1284 EPP/ECP. Enhanced Parallel Port/Extended Capabilities Port (параллельный порт с расширенными возможностями).
  • USB . Universal Serial Bus (универсальная последовательная шина).
  • IEEE-1394. Шина FireWire, называемая также i.Link.
  • ATA PIO. AT Attachment (известный также как IDE) Programmed I/O (шина ATA с программируемым вводом-выводом).
  • ATA-UDMA. AT Attachment Ultra DMA (режим Ultra-DMA шины ATA).
  • SCSI. Small Computer System Interface (интерфейс малых компьютерных систем).
  • FPM. Fast Page Mode (быстрый постраничный режим).
  • EDO. Extended Data Out (расширенный ввод-вывод).
  • SDRAM. Synchronous Dynamic RAM (синхнонное динамическое ОЗУ).
  • RDRAM. Rambus Dynamic RAM (динамическое ОЗУ технологии Rambus).
  • RDRAM Dual. Двухканальная RDRAM (одновременное функционирование).
  • DDR-SDRAM. Double-Data Rate SDRAM (SDRAM с удвоенной скоростью).
  • CPU FSB. Шина процессора (или Front-Side Bus).
  • Hub-интерфейс. Шина набора микросхем Intel 8xx.
  • HyperTransport. Шина набора микросхем AMD.
  • V-link. Шина набора микросхем VIA Technologies.
  • MuTIOL. Шина набора микросхем SiS.
  • DDR2. Новое поколение памяти стандарта DDR.

Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении